Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Trop ; 241: 106889, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36893830

RESUMO

Trypanosoma cruzi, the agent of Chagas disease, can infect through conjunctive or oral mucosas. Therefore, the induction of mucosal immunity by vaccination is relevant not only to trigger local protection but also to stimulate both humoral and cell-mediated responses in systemic sites to control parasite dissemination. In a previous study, we demonstrated that a nasal vaccine based on a Trans-sialidase (TS) fragment plus the mucosal STING agonist c-di-AMP, was highly immunogenic and elicited prophylactic capacity. However, the immune profile induced by TS-based nasal vaccines at the nasopharyngeal-associated lymphoid tissue (NALT), the target site of nasal immunization, remains unknown. Hence, we analyzed the NALT cytokine expression generated by a TS-based vaccine plus c-di-AMP (TSdA+c-di-AMP) and their association with mucosal and systemic immunogenicity. The vaccine was administered intranasally, in 3 doses separated by 15 days each other. Control groups received TSdA, c-di-AMP, or the vehicle in a similar schedule. We demonstrated that female BALB/c mice immunized intranasally with TSdA+c-di-AMP boosted NALT expression of IFN-γ and IL-6, as well as IFN-ß and TGF-ß. TSdA+c-di-AMP increased TSdA-specific IgA secretion in the nasal passages and also in the distal intestinal mucosa. Moreover, T and B-lymphocytes from NALT-draining cervical lymph nodes and spleen showed an intense proliferation after ex-vivo stimulation with TSdA. Intranasal administration of TSdA+c-di-AMP provokes an enhancement of TSdA-specific IgG2a and IgG1 plasma antibodies, accompanied by an increase IgG2a/IgG1 ratio, indicative of a Th1-biased profile. In addition, immune plasma derived from TSdA+c-di-AMP vaccinated mice exhibit in-vivo and ex-vivo protective capacity. Lastly, TSdA+c-di-AMP nasal vaccine also promotes intense footpad swelling after local TSdA challenge. Our data support that TSdA+c-di-AMP nasal vaccine triggers a NALT mixed pattern of cytokines that were clearly associated with an evident mucosal and systemic immunogenicity. These data are useful for further understanding the immune responses elicited by the NALT following intranasal immunization and the rational design of TS-based vaccination strategies for prophylaxis against T. cruzi.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Vacinas , Feminino , Animais , Camundongos , Administração Intranasal , Imunidade nas Mucosas , Linfonodos , Doença de Chagas/prevenção & controle , Citocinas/metabolismo , Nasofaringe/metabolismo , Mucosa Intestinal/metabolismo , Imunoglobulina G , Camundongos Endogâmicos BALB C
2.
Med Microbiol Immunol ; 208(5): 651-666, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30413884

RESUMO

Adipose tissue is a target of Trypanosoma cruzi infection being a parasite reservoir during the chronic phase in mice and humans. Previously, we reported that acute Trypanosoma cruzi infection in mice is linked to a severe adipose tissue loss, probably triggered by inflammation, as well as by the parasite itself. Here, we evaluated how infection affects adipose tissue homeostasis, considering adipocyte anabolic and catabolic pathways, the immune-endocrine pattern and the possible repercussion upon adipogenesis. During in vivo infection, both lipolytic and lipogenic pathways are profoundly affected, since the expression of lipolytic enzymes and lipogenic enzymes was intensely downregulated. A similar pattern was observed in isolated adipocytes from infected animals and in 3T3-L1 adipocytes infected in vitro with Trypanosoma cruzi. Moreover, 3T3-L1 adipocytes exposed to plasmas derived from infected animals also tend to downregulate lipolytic enzyme expression which was less evident regarding lipogenic enzymes. Moreover, in vivo-infected adipose tissue reveals a pro-inflammatory profile, with increased leucocyte infiltration accompanied by TNF and IL-6 overexpression, and adiponectin downregulation. Strikingly, the nuclear factor PPAR-γ is strongly decreased in adipocytes during in vivo infection. Attempts to favor PPAR-γ-mediated actions in the adipose tissue of infected animals using agonists failed, indicating that inflammation or parasite-derived factors are strongly involved in PPAR-γ inhibition. Here, we report that experimental acute Trypanosoma cruzi infection disrupts both adipocyte catabolic and anabolic metabolism secondary to PPAR-γ robust downregulation, tipping the balance towards to an adverse status compatible with the adipose tissue atrophy and the acquisition of an inflammatory phenotype.


Assuntos
Tecido Adiposo/patologia , Doença de Chagas/patologia , Homeostase , Adipócitos/parasitologia , Adipócitos/patologia , Adipocinas/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Enzimas/metabolismo , Expressão Gênica , Imunidade Celular , Imunidade Humoral , Lipogênese , Lipólise , Camundongos , Trypanosoma cruzi/crescimento & desenvolvimento
3.
Front Microbiol ; 9: 2100, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30258417

RESUMO

Lactococcus lactis is a promising candidate for the development of mucosal vaccines. More than 20 years of experimental research supports this immunization approach. In addition, 3' 5'- cyclic di-adenosine monophosphate (c-di-AMP) is a bacterial second messenger that plays a key role in the regulation of diverse physiological functions (potassium and cellular wall homeostasis, among others). Moreover, recent studies showed that c-di-AMP has a strong mucosal adjuvant activity that promotes both humoral and cellular immune responses. In this study, we report the development of a novel mucosal vaccine prototype based on a genetically engineered L. lactis strain. First, we demonstrate that homologous expression of cdaA gen in L. lactis is able to increase c-di-AMP levels. Thus, we hypothesized that in vivo synthesis of the adjuvant can be combined with production of an antigen of interest in a separate form or jointly in the same strain. Therefore, a specifically designed fragment of the trans-sialidase (TScf) enzyme from the Trypanosoma cruzi parasite, the etiological agent of Chagas disease, was selected to evaluate as proof of concept the immune response triggered by our vaccine prototypes. Consequently, we found that oral administration of a L. lactis strain expressing antigenic TScf combined with another L. lactis strain producing the adjuvant c-di-AMP could elicit a TS-specific immune response. Also, an additional L. lactis strain containing a single plasmid with both cdaA and tscf genes under the Pcit and Pnis promoters, respectively, was also able to elicit a specific immune response. Thus, the current report is the first one to describe an engineered L. lactis strain that simultaneously synthesizes the adjuvant c-di-AMP as well as a heterologous antigen in order to develop a simple and economical system for the formulation of vaccine prototypes using a food grade lactic acid bacterium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...